White Mulberry

Scientific Name(s): Morus alba L. Family: Moreaceae.

Common Name(s): White mulberry , common mulberry , silkworm mulberry , pawi bush


The medical literature includes numerous references for white mulberry use in atherosclerosis, cancer, diabetes, infection, and neurodegenerative disorders. However, there are no clinical trials to support these uses.


In mild dyslipidemia, 1 g of white mulberry leaf tablets containing 1.3 mg of 1-deoxynojirimycin (DNJ) 3 times a day before meals has been used. A dose of 1 g of powdered leaf 3 times a day has been used to treat diabetes or high cholesterol. White mulberry is available in numerous dosage forms and is also marketed to maintain healthy blood sugar levels and to support cardiovascular health.


Hypersensitivity to any of the components of white mulberry.


Avoid use during pregnancy and lactation due to lack of clinical data.


Because white mulberry may alter blood sugar levels, it should be used cautiously with medications (eg, insulin) that lower blood sugar in diabetes. White mulberry may also increase the side effects of cholesterol-lowering medications and should also be used with caution in patients using benzodiazepines, barbiturates, or antidepressants. White mulberry may also interact with medications used for gout.

Adverse Reactions

The pollen extract may cause airborne-contact urticaria. Patients with nasobronchial allergies may be sensitive to the pollen extract. One clinical study found that some patients experienced mild diarrhea, dizziness, constipation, and bloating.


No deaths were associated with 2, 5, and 10 g/kg doses in animal toxicity studies.


The genus Morus is widely distributed throughout the world. As the primary food source for silkworms, the plant is cultivated in many regions of Asia for silk production. White mulberry is a medium-sized, monoecious, deciduous tree growing to 30 m tall and 1.8 m wide in both temperate and tropical areas. The leaves are ovately shaped and may be lobed or unlobed. The fruit is white to pinkish in color, in contrast to red or black in most other Morus species. ,


The medicinal use of the leaves, root bark, branches, and fruits of white mulberry is documented in the Pharmacopoeia of the People's Republic of China . It is also an official drug of the British Herbal Pharmacopoeia . It has been included in historical documents since AD 659. The root bark has cathartic and anthelmintic properties and is bitter in taste. The root juice agglutinates the blood and also kills worms in the digestive system. The stem bark has purgative and vermifuge properties. The leaves have diaphoretic and emollient properties, and the leaf juice has been used to prevent throat infections and inflammation. The fruit juice has a cooling and laxative property and is used to treat fevers, colds, diarrhea, malaria, amoebiasis, constipation, and intestinal worms (eg, tapeworm). ,

The fruits may be eaten fresh and are used in juice, preserves, and stews, and can be fermented into a sweet and sour tasting wine. White mulberry leaves are used in animal feed for sheep, goats, and cattle. Mulberries are used in syrup preparations as well as to flavor and color medicine: in Chinese markets, mulberry is mixed with various herb combinations to cure or treat conditions such as productive cough, fever, irritability, superficial edema related to urinary problems, and diabetes. ,


Proteins, carbohydrates, fats, fibers, minerals, and vitamins have been isolated from white mulberry.

On a dry-weight basis, white mulberry leaves contain 15% to 30% protein, 2% to 8% fat, 10% to 14% crude fiber, 28% to 44% dietary fiber, and 11% to 17% ash content. The proteins in mulberry leaves are used with wheat flour to make bread in India. The leaves also contain ascorbic acid, beta-carotenes, iron, zinc, calcium, phosphorous, and magnesium. Sialic acid-binding lectins, MLL 1 and MLL 2, were purified from the leaves of white mulberry and may be involved in defense against pathogens. The leaves also contain several antioxidative flavonoids including quercetin. Many antioxidant phenolic compounds and moracins have been identified, with highest concentrations reported in the leaves and roots. , Chalcone derivatives isolated from the leaves have moderate cytotoxic activity.

Linoleic (57%), followed by palmitic acid (22%), are the dominate fatty acids in white mulberry fruits. The fruit also contains 1.1% total fat. The moisture content of the fruit is 72%, pH 5.6, total soluble solids 20%, and 22.4 mg per 100 mL of ascorbic acid. A total of 10 mineral elements were identified in white mulberry fruits, with potassium having the highest concentration. Several alkaloids and amino acids have been isolated. The fruit is also rich in anthocyanins, which may be used for commercial production as a natural red food colorant.

Stilbenes, flavonoids, benzofuran derivatives, and coumarins have been isolated from the bark. Mulberroside A, a stilbene derivative, has antitussive and antiasthmatic activity. Kuwanon C and G have antibacterial , activity, while kuwanons G and H have hypotensive activity. Flavonoids from the root bark have antiviral activity and a flavanone glycoside exhibited anticancer activity.

Uses and Pharmacology

The medical literature includes references for white mulberry use in atherosclerosis, cancer, diabetes, infection, and neurodegenerative disorders.

Antibacterial and antiviral activity
In vitro data

Antibacterial activity is associated with kuwanon C, mulberrofuran G, and albanol B from mulberry leaves with minimum inhibitory concentrations (MICs) ranging from 5 to 30 mg/mL. , Chloroform mulberry extracts have antibacterial activity against Bacillus subtilis and acetic acid extracts against Staphylococcus aureus and Escherichia coli . Chemical constituents (eg, morusin, kuwanon C, sanggenon B and D) from the bark have activity against S. aureus , Streptococcus faecalis , B. subtilis , Mycobacterium smegmatis , and mold species. Kuwanon G from a leaf methanol extract has a MIC (8 mg/mL) against the oral pathogen Streptococcus mutans and the cariogenic bacteria Streptococcus sobrinus , Streptococcus sanguis and Porpyromonas gingivalis , which causes periodontitis. At a concentration of 20 mcg/mL kuwanon G completely inactivated S. mutans in 1 minute. Similar studies of other isolated leaf compounds found antibacterial activity against S. mutans . Leachianone G from the root bark showed potent antiviral activity (concentration that inhibits 50% [IC 50 ], 1.6 mcg/mL) against herpes simplex type 1 virus (HSV-1).

Clinical data

No human clinical data are available regarding the antibacterial or antiviral activity of white mulberry.

Antioxidant activity
In vitro data

The numerous flavonoids from the leaves and the phenols from the roots, branches, and fruits all have free radical scavenging properties. Mulberroside A and oxyresveratrol show inhibitory activity against induced lipid peroxidation in rat microsomes and free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The DPPH scavenging activity is associated with caffeoylquinic acids in immature white mulberry fruits and anthocyanins in mature white mulberry fruits. A white mulberry water extract increased the IC 50 of doxorubicin ( P < 0.05) in a dose-dependent manner in a study examining the cardioprotective effect of plant extracts.

Clinical data

No human clinical data are available regarding the antioxidant activity of white mulberry.

In vitro and animal data

The anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside from white mulberry inhibited the migration and invasion of highly metastatic A549 human lung carcinoma cells. The anticancer activity may be associated with decreased expression of matrix matalloprotinase-2 and urokinase-plasminogen activator and enhanced expression of tissue inhibitor of matrix matalloprotinase-2 and plasminogen activator inhibitor. A prenylated flavanone, isolated from an ethyl acetate extract of white mulberry root, exerted cytotoxic activity against rat hepatoma cells with an IC 50 of 52.8 mg/mL. A white mulberry root bark extract exhibited cytotoxic activity by inducing apoptosis and inhibiting microtubule assembly on K-562, B380 human leukemia cells, and B16 mouse melanoma cells. White mulberry leaf extracts inhibited the growth of HL60 human promyelocytic leukemia and multidrug resistance HL60 cells (HL60/VINC and HL60/DOX). The anthocyanins from the fruit controlled tumor metastasis and motility of a melanoma murine cancer cell line by (a) inhibiting tumor cell migration, spreading and tissue invasion of tumor cells, (b) inhibiting signaling pathways, and (c) decreasing DNA binding to nuclear factor kappa-B and AP-1. Albanol A, from the root bark of white mulberry, induced apoptosis in HL60 cells. Albanol A exhibited potent DNA topoisomerase II inhibitory activity (IC 50 , 22.8 mcM) similar to that of the control etoposide (IC 50 , 34.5 mcM), which may trigger apoptosis of HL60 cells.

Clinical data

No human clinical data are available regarding the anticancer activity of white mulberry.

Cardiovascular disease
In vitro and animal data

White mulberry leaf extracts suppressed gene expression of proinflammatory stimuli in vascular endothelial cells. A leaf ethyl acetate extract exhibited dual vasoactive effects on rat aorta. Relaxation of the aorta was caused by inhibition of voltage- and receptor-dependent calcium channels in vascular smooth muscle cells and contraction of the aorta through activation of ryanodine receptors in the sarcoplasmic reticulum. The leaf extracts may also inhibit the activity of matrix metalloproteinases, protein expression and phosphorylation, and signaling pathways in rat thoracic aorta smooth muscle cells involved in the pathophysiology of atherosclerosis.

Dietary consumption of white mulberry leaf (containing quercetin) reduced atherosclerotic lesion development in low-density lipoprotein (LDL) receptor deficient mice by increasing LDL resistance to oxidative modification. Supplementation of white mulberry methanol root bark extract (500 mg/kg/day for 15 days) in cholesterol-fed rats resulted in decreased total cholesterol, LDL-cholesterol, very low-density lipoprotein-cholesterol, and triglycerides and improved high-density lipoprotein-cholesterol (HDL-C). White mulberry fruit extracts also improved the lipid profile in hyperlipidemic rats and in hamsters fed a high cholesterol diet. The hypolipidemic activity is associated with enhanced hepatic LDL receptor expression, which improves clearance of LDL and decreases lipid biosynthesis. Liver lipid accumulation was suppressed in rats administered either DNJ, a constituent of white mulberry leaves, or white mulberry extract enriched in DNJ.

Clinical data

Twenty-three patients meeting the National Cholesterol Education Program ATP III criteria guidelines for dyslipidemia were administered three 280 mg white mulberry leaf tablets 3 times a day before meals over 12 weeks. Lipid profiles and liver function tests were performed every 4 weeks. At 4 and 8 weeks, triglycerides were reduced 10.2% and 12.5% when compared with baseline. At the conclusion of the study, total cholesterol, triglycerides, and LDLs were decreased by 4.9%, 14.1%, and 5.6%, respectively, and HDL increased by 19.7% when compared with baseline. Therefore, for mild dyslipidemia consumption of 1 g of white mulberry leaf tablets (1.3 mg of DNJ) 3 times a day before meals may be effective. Several mechanisms of action may be involved with the effect of white mulberry leaf tablet therapy on lipid profiles, including (a) regulation of hepatic gene expression involved in lipid and lipoprotein metabolism; (b) the leaves contains DNJ, which can reduce plasma glucose levels; reduced levels result in decreased fatty acid influx to the liver from adipose tissue, leading to decreased triglyceride and cholesterol levels; (c) antiatherosclerotic effects of the leaf flavonoids; (d) the water soluble fiber in white mulberry leaves may lead to decreased absorption of dietary cholesterol.

In vitro and animal data

A dose of 600 mg/kg/day of 70% white mulberry alcohol bark extract to streptozotocin-induced diabetic rats over 10 consecutive days reduced serum glucose by 41% and increased serum insulin by 44%. The bark extract may reduce lipid peroxidation and oxidative stress in pancreatic beta cells. The glycoprotein, moran 20K, from a white mulberry aqueous methanolic root bark extract also lowered blood glucose in streptozotocin-induced diabetic rats. The amino acid composition of moran 20K is similar to insulin as it contains above 20% serine and cysteine. In vivo hypoglycemic activity is documented for moracin M, steppogenin-4'-O-beta-D-glucosiade, and mullberroside A, which are common types of benzofurans, flavanones, and stilbene glycosides in white mulberry root bark.

Streptozotocin-induced diabetic rats fed white mulberry aqueous leaf extract had decreased nitric oxide synthase expression in the hypothalamus reducing the desire for food under diabetic conditions. DNJ from the leaves inhibited human and rat small intestinal disaccharidase activity of sucrase, maltase, and isomaltase competitively. A white mulberry ethanol leaf extract reduced glucose in diabetic rats by increasing glucose uptake and glucose transporter 4 translocation in adipose tissue. A similar study documented how white mulberry leaf improved postprandial hyperglycemia in rats, possibly by inhibiting glucose transport and alpha-glucosidase at the gut brush border. Antioxidant activity in white mulberry leaf may restore free radical-induced vascular dysfunction in diabetic rats. A white mulberry leaf extract stimulated 5-AMP-activated protein kinase (AMPK) in rat skeleton muscle. AMPK is a major signaling pathway in exercise-stimulated, insulin-independent glucose transport in skeletal muscle. Dietary supplementation of purified quercetin from white mulberry leaves in obese mice led to improved plasma glucose levels and reduced oxidative stress in the liver.

Clinical data

A human study documented that a single oral dose of 0.8 and 1.2 g of DNJ-enriched powder suppressed the elevation of postprandial blood glucose and secretion of insulin. A similar study documented a ratio of 1:10 white mulberry leaf extract to sucrose in suppressing postprandial blood glucose and insulin.

Skin tone
In vitro data

Because tyrosinase is a key enzyme involved in melanin biosynthesis, tyrosinase inhibitors may improve the appearance of skin by preventing the overproduction of melanin. Betulinic acid from white mulberry extracts was shown to have anti-inflammatory and antityrosinase activity. , A white mulberry leaf methanol extract containing mulberroside F inhibited tyrosinase activity and exhibited superoxide scavenging activity.

Clinical data

In a randomized clinical trial, an over-the-counter cosmetic product containing white mulberry improved the appearance of facial wrinkles by helping to restore fibrillin-1.

Other pharmacological uses
Alcohol-induced fatty liver

A polyherbal Chinese medicine that included white mulberry was administered to rats with alcohol-induced fatty acid livers and improved their liver/body weight, serum triglycerides and total cholesterol, liver triglycerides and total cholesterol, and ALT and AST.


White mulberry leaf extracts exhibited anxiolytic and muscle relaxant activity in different animal models of anxiety based on exploratory behavior in mice.


Morin from white mulberry, at a concentration of 80 mg/kg, exhibited a hypouricemic action and inhibited xanthine oxidase in oxonate-induced hyperuricemic rats. The inhibitory activity on urate uptake in rat renal brush border membrane vesicles was more potent than that of the prescription agent probenecid. Morin exhibited similar activity on urate transport in the human kidney.

Immune system activity

Pretreatment with a white mulberry root bark extract inhibited induced mast cell degranulation and histamine release in rat peritoneal mast cells.


Anti-inflammatory activity is documented for mulberroside A and oxyresveratrol from the root bark of white mulberry in reducing carrageenin-induced paw edema in rats. A white mulberry leaf methanol extract and its fractions inhibited inflammatory mediators nitric oxide, prostaglandin E2, and cytokines in a mouse macrophage cell line. White mulberry leaf extracts protected rat organ tissues (eg, liver, adrenal glands, kidneys, spleen) against inflammation and peroxidation induced by stress. The antioxidant activity was more effective than pure rutin, and the adrenal glands were the primary target organs for antioxidants.


A mixture of 3 herbs that included white mulberry regulated lipid metabolism, body weight gain, and adipose tissue mass by changing the expression of hepatic target genes in high-fat, diet-induced, obese mice. Melanin-concentrating hormone (MCH) is involved in feeding and energy metabolism. White mulberry leaf extract exhibited an antagonistic effect to MCH1 receptor in diet-induced obese mice, resulting in decreased body weight and adiposity, food intake, and hepatic lipid accumulation.

Parkinson disease

Some neurological diseases, such as Parkinson disease, are associated with gamma-aminobutyric acid (GABA) depletion in the brain. White mulberry leaves have antioxidant activity and are GABA-enriched, which may provide a neuroprotective effect against cerebral ischemia as well as neurotoxins. White mulberry leaf extracts have antidopaminergic activity , mediated through dopamine D2 receptors as documented by (a) reducing haloperidol and metoclopramide-induced catalepsy in mice; (b) blocking amphetamine-induced stereotyped behavior (such as schizophrenia); (c) and increasing the sensitivity to barbiturates.

Snake venom

White mulberry leaf extract completely blocked in vitro proteolytic and hyaluronolytic activities of Vipera / Daboia russelii venom, therefore protecting against tissue degradation. The extract also neutralized the edema, hemorrhage, and myonecrotic activities of the venom. Procoagulant activity was partially inhibited, while complete inhibition was attained against degradation of A-alpha chain of human fibrinogen.


An animal study documented that white mulberry root extract may have adaptogenic effects against induced neurological, behavioral, and biochemical changes due to long-term stress.


In mild dyslipidemia, 1 g of white mulberry leaf tablets (1.3 mg of DNJ) 3 times a day before meals has been used. A dose of 1 g of powdered leaf 3 times a day has been used to treat diabetes or high cholesterol. White mulberry is available in numerous dosage forms and is also marketed to maintain healthy blood sugar levels and to support cardiovascular health.


Avoid use during pregnancy and lactation due to lack of clinical data.


Because white mulberry may alter blood sugar levels it should be used cautiously with medications (eg, insulin) that lower blood sugar in diabetes. White mulberry may also increase the side effects of cholesterol-lowering medications and should be sued with caution in patients using benzodiazepines, barbiturates, or antidepressants. White mulberry may also interact with medications used for treating gout.

Adverse Reactions

Avoid use with hypersensitivity to any of the components of white mulberry. The pollen extract may cause airborne-contact urticaria. Patients with nasobronchial allergies may be sensitive to the pollen extract. One clinical study found that some patients experienced mild diarrhea, dizziness, constipation, and bloating.


No deaths were associated with 2, 5, and 10 g/kg doses in animal toxicity studies. High doses produced depression of locomotor activity, decreased alertness, passivity, and abnormal gait in mice.


1. Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J. Genetic diversity and relationships in mulberry (genus Morus ) as revealed by RAPD and ISSR marker assays. BMC Genet . 2004;5:1.
2. Kumar V, Chauhan S. Mulberry: Life enhancer. J Med Plant Res . 2008;2(10):271-278.
3. Yamatake Y, Shibata M, Nagai M. Pharmacological studies on root bark of mulberry tree ( Morus alba L.). Jpn J Pharmacol . 1976;26(4):461-469.
4. Lentini F, Venza F. Wild food plants of popular use in Sicily. J Ethnobiol Ethnomed . 2007;3:15.
5. Kandylis K, Hadjigeorgiou I, Harizanis P. The nutritive value of mulberry leaves ( Morus alba ) as a feed supplement for sheep. Trop Anim Health Prod . 2009;41(1):17-24.
6. Lans CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed . 2006;2:45.
7. Butt M, Nazir A, Tauseef Sultan M, Schroen K. Morus alba L. nature's functional tonic. Trends Food Sci Technol . 2008;19(10):505-512.
8. Ratanapo S, Ngamjunyaporn W, Chulavatnatol M. Sialic acid binding lectins from leaf of mulberry ( Morus alba ). Plant Sci . 1998;139(2):141-148.
9. Kim SY, Gao JJ, Lee WC, Ryu KS, Lee KR, Kim YC. Antioxidative flavonoids from the leaves of Morus alba . Arch Pharm Res . 1999;22(1):81-85.
10. Chon SU, Kim YM, Park YJ, Heo BG, Park YS, Gorinstein S. Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant ( Morus alba L.). Eur Food Res Technol . 2009;230(2):231-237.
11. Yang Y, Gong T, Liu C, Chen RY. Four new 2-arylbenzofuran derivatives from leaves of Morus alba L. Chem Pharm Bull (Tokyo) . 2010;58(2):257-260.
12. Yang Y, Zhang T, Xiao L, Yang L, Chen R. Two new chalcones from leaves of Morus alba L. Fitoterapia . 2010;81(6):614-616.
13. Ercisli S, Orhan E. Chemical composition of white ( Morus alba ), red ( Morus rubra ) and black ( Morus nigra ) mulberry fruits. Food Chem . 2007;103(4):1380-1384.
14. Kusano G, Orihara S, Tsukamoto D, et al. Five new nortropane alkaloids and six new amino acids from the fruit of Morus alba LINNE growing in Turkey. Chem Pharm Bull (Tokyo) . 2002;50(2):185-192.
15. Liu X, Xiao G, Chen W, Xu Y, Wu J. Quantification and purification of mulberry anthocyanins with macroporous resins. J Biomed Biotechnol . 2004;2004(5):326-331.
16. Piao SJ, Qui F, Chen LX, Pan Y, Dou DQ. New stilbene, benzofuran, and coumarin glycosides from Morus alba . Helv Chim Acta . 2009;92(3):579-587.
17. Park KM, You JS, Lee HY, Baek NI, Hwang JK. Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol . 2003;84(2-3):181-185.
18. Nomura T, Hano Y, Fukai T. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree. Proc Jpn Acad Ser B Phys Biol Sci . 2009;85(9):391-408.
19. Du J, He ZD, Jiang RW, Ye WC, Xu HX, But PP. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry . 2003;62(8):1235-1238.
20. Zhang M, Wang RR, Chen M, Zhang HQ, Shi S, Zhang LY. A new flavanone glycoside with anti-proliferation activity from the root bark of Morus alba . Chinese J Nat Med . 2009;7(2):105-107.
21. Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba . J Antimicrob Chemother . 2008;62(4):751-757.
22. Oki T, Kobayashi M, Nakamura T, et al. Changes in radical scavenging activity and components of mulberry fruit during maturation. J Food Sci . 2006;71(1):C18-C22.
23. Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Bauer JA. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol . 2005;96(1):80-87.
24. Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL, Hsieh YS. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett . 2006;235(2):248-259.
25. Nam SY, Yi HK, Lee JC, et al. Cortex mori extract induces cancer cell apoptosis through inhibition of microtubule assembly. Arch Pharm Res . 2002;25(2):191-196.
26. Skupien K, Kostrzewa-Nowak D, Oszmianski J, Tarasiuk J. In vitro antileukaemic activity of extracts from chokeberry ( Aronia melanocarpa [Michx] Elliott) and mulberry ( Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother Res . 2008;22(5):689-694.
27. Huang HP, Shih YW, Chang YC, Hung CN, Wang CJ. Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway. J Agric Food Chem . 2008;56(19):9286-9293.
28. Kikuchi T, Nihei M, Nagai H, et al. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull (Tokyo) . 2010;58(4):568-571.
29. Shibata Y, Kume N, Arai H, et al. Mulberry leaf aqueous fractions inhibit TNF-alpha-induced nuclear factor kappaB (NF-kappaB) activation and lectin-like oxidized LDL receptor-1 (LOX-1) expression in vascular endothelial cells. Atherosclerosis . 2007;193(1):20-27.
30. Xia M, Qian L, Zhou X, Gao Q, Bruce IC, Xia Q. Endothelium-independent relaxation and contraction of rat aorta induced by ethyl acetate extract from leaves of Morus alba (L.). J Ethnopharmacol . 2008;120(3):442-446.
31. Chan KC, Ho HH, Huang CN, Lin MC, Chen HM, Wang CJ. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals. J Agric Food Chem . 2009;57(19):9147-9153.
32. Enkhmaa B, Shiwaku K, Katsube T, et al. Mulberry ( Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr . 2005;135(4):729-734.
33. El-Beshbishy HA, Singab AN, Sinkkonen J, Pihlaja K. Hypolipidemic and antioxidant effects of Morus alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sci . 2006;78(23):2724-2733.
34. Yang X, Yang, Zheng H. Hypolipidemic and antioxidant effects of mulberry ( Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol . 2010;48(8-9):2374-2379.
35. Liu LK, Chou FP, Chen YC, Chyau CC, Ho HH, Wang CJ. Effects of mulberry ( Morus alba L.) extracts on lipid homeostasis in vitro and in vivo. J Agric Food Chem . 2009;57(16):7605-7611.
36. Tsuduki T, Nakamura Y, Honma T, et al. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver. J Agric Food Chem . 2009;57(22):11024-11029.
37. Aramwit P, Petcharat K, Supasyndh O. Efficacy of mulberry leaf tablets in patients with mild dyslipidemia. Phytother Res . 2010;25(3):365-369.
38. Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol . 2005;100(3):333-338.
39. Kim ES, Park SJ, Lee EJ, Kim BK, Huh H, Lee BJ. Purification and characterization of Moran 20K from Morus alba . Arch Pharm Res . 1999;22(1):9-12.
40. Zhang M, Chen M, Zhang HQ, Sun S, Xia B, Wu FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba . Fitoterapia . 2009;80(8):475-477.
41. Jang MH, Kim H, Shin MC, et al. Administration of Folium mori extract decreases nitric oxide synthase expression in the hypothalamus of streptozotocin-induced diabetic rats. Jpn J Pharmacol . 2002;90(2):189-192.
42. Oku T, Yamada M, Nakamura M, Sadamori N, Nakamura S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br J Nutr . 2006;95(5):933-938.
43. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kukongviriyapan U. Ethanolic extract of Morus alba Linn. leaf increases glucose uptake and glucose transporter 4 translocation in adipose cells of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract . 2008;79(suppl 1):S108.
44. Park JM, Bong HY, Jeong HI, Kim YK, Kim J, Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr Res Pract . 2009;3(4):272-278.
45. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kukongviriyapan U, Nakmareong S, Itharat A. Mulberry leaf extract restores arterial pressure in streptozotocin-induced chronic diabetic rats. Nutr Res . 2009;29(8):602-608.
46. Ma X, Iwanaka N, Masuda S, et al. Morus alba leaf extract stimulates 5'-AMP-activated protein kinase in isolated rat skeletal muscle. J Ethnopharmacol . 2009;122(1):54-59.
47. Katsube T, Yamasaki M, Shiwaku K, et al. Effect of flavonol glycoside in mulberry ( Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J Sci Food Agric . 2010;90(14):2386-2392.
48. Kimura T, Nakagawa K, Kubota H, et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem . 2007;55(14):5869-5874.
49. Nakamura M, Nakamura S, Oku T. Suppressive response of confections containing the extractive from leaves of Morus alba on postprandial blood glucose and insulin in healthy human subjects. Nutr Metab (Lond) . 2009;6:29.
50. Nattapong S, Omboon L. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation. Nat Prod Res . 2008;22(9):727-734.
51. Smit N, Vicanova J, Pavel S. The hunt for natural skin whitening agents. Int J Mol Sci . 2009;10(12):5326-5349.
52. Lee SH, Choi SY, Kim H, et al. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull . 2002;25(8):1045-1048.
53. Watson RE, Ogden S, Cotterell LF, et al. Effects of a cosmetic ‘anti-ageing’ product improves photoaged skin [corrected]. Br J Dermatol . 2009;161(2):419-426.
54. Kwon HJ, Kim YY, Choung SY. Amelioration effects of traditional Chinese medicine on alcohol-induced fatty liver. World J Gastroenterol . 2005;11(35):5512-5516.
55. Yadav AV, Kawale LA, Nade VS. Effect of Morus alba L. (mulberry) leaves on anxiety in mice. Indian J Pharmacol . 2008;40(1):32-36.
56. Yu Z, Fong WP, Cheng CH. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent: uricosuric effect and xanthine oxidase inhibitory activity. J Pharmacol Exp Ther . 2006;316(1):169-175.
57. Yu Z, Fong WP, Cheng CH. Morin (3,5,7,2',4'-pentahydroxyflavone) exhibits potent inhibitory actions on urate transport by the human urate anion transporter (hURAT1) expressed in human embryonic kidney cells. Drug Metab Dispos . 2007;35(6):981-986.
58. Chai OH, Lee MS, Han EH, Kim HT, Song CH. Inhibitory effects of Morus alba on compound 48/80-induced anaphylactic reactions and anti-chicken gamma globulin IgE-mediated mast cell activation. Biol Pharm Bull . 2005;28(10):1852-1858.
59. Chung KO, Kim BY, Lee MH, et al. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol . 2003;55(12):1695-1700.
60. Choi EM, Hwang JK. Effects of Morus alba leaf extract on the production of nitric oxide, prostagla